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Abstract. We consider a quantum system with a finite number N of states and we show 
that a Markov process evolving in an ‘extended’ discrete phase space can be associated 
with the discrete Wigner function of the system. This Wigner function is built using the 
Weyl quantisation procedure on the group Z, x Z , ~ .  Moreover, we can use this process 
to compute the quantum mean values as probabilistic expectations of functions of this 
process. This probabilistic formulation can be seen as a stochastic mechanics in phase space. 

1. Introduction 

The interest in using Wigner functions in the probabilistic description of evolutions 
of quantum systems has been emphasised many times (see, e.g., [ l ,  21). In particular, 
they can be used in the framework of stochastic mechanics [3,4] where they allow 
one to treat pure or mixed states at the same level. 

The present work is ‘in the line’ of previous results obtained, for example, in [5-71 
where the density of a quantum state is shown to be solution of a forward Kolmogorov 
(Fokker-Planck) equation. This equation leads to a Markov process taking values in 
the configuration space in [6,7], and in the momentum space in [ 5 ] .  We want to give 
here a similar probabilistic interpretation of the Weyl-Wigner formulation of quantum 
mechanics. But it is well known that the Wigner function is not a probability density. 
To give it a precise probabilistic meaning we introduce a decomposition of the Wigner 
function as a difference of two positive functions. This couple defines the density of 
a stochastic process having values in the phase space enlarged by a dichotomic variable. 
This programme can be completed in the continuous case, at least formally [8]. 
Moreover, if the system has an associated Hilbert space of finite dimension, rigorous 
results can be formulated. In [3] a first approach to this problem has already been 
presented. In the following we give general results, in particular the problem concerning 
the case of a Hilbert space with an even dimension is completely solved by using group 
theory considerations. The theory of discrete Weyl and Fano operators we develop 
here, in order to define a discrete Wigner function, is mainly based on the properties 
of the phase space group ZN x ZN. 
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2. Weyl system on an Abelian group 

In order to fix the notation we recall first some basic properties of Weyl systems. These 
systems can be defined in the following abstract way. 

2.1. Projective representation 

Let (G,  +) be a (locally compact) Abelian group. A multiplier on G is a function m 
such that 

m : G x G + T =  { Z E  C; IzI = 1) 

m(0,O) = 1 

m(X1,  X 2 ) m ( X l + X 2 ,  x3) = m ( X l  x 2 + x 3 ) m ( x 2 ,  x 3 )  VX1, X2,  X3 E G. 

m satisfies 

m(0, X )  = m ( X ,  0 )  m ( X ,  - X )  = m ( - X ,  X )  V X  E G.  

A unitary projective representation P of G with respect to a multiplier m on G is 
a mapping from G to the set of unitary operators acting on a Hilbert space, such that 

P ( X ) P ( X ‘ )  = m ( X ,  X ’ ) P ( X + X ‘ )  V X ,  X ’  E G .  

The P ( X )  have the following commutation relations: 

P ( X ) P ( X ’ )  = b,(X,  X ’ ) P ( X ’ )  P ( X )  

where b, is the antisymmetric bicharacter of G associated with m 

b,(X,  X ’ ) =  m ( X ,  X’ ) r i i (X’ ,  X )  (2.1) 

Conversely, with the antisymmetric bicharacter b, defined in (2.1), we can associate 
(the bar denotes complex conjugation). 

a class of multipliers. More precisely, we have the following result. 

Theorem 2.1 [SI. If to two multipliers m and n on the same group G there corresponds 
a common bicharacter then there exists a function 7 from G to T such that 

m ( X ,  X ’ )  = v ( X ) v ( X ’ ) f ( X + X ’ ) n ( X ,  X ’ )  V X ,  X ’ E  G .  

2.2. Phase space formulation 

Let (B be a (locally compact) Abelian group. The dual group & of (B (the Abelian 
group of all the non-equivalent irreducible unita? representations of (e), can be 
identified with the set of characters of $3. For any x E (e there exists a character xx : (e + T 
such that 

X X ( Y ) X X ( Y ’ )  = x x ( Y  + Y ’ )  X X ( Y ) X X f ( Y )  =xx+x.(y)  v y , y ’ €  $9 X’E 4. 

Definition 2.2. We denote the product group 9 x  3 by G. Let m be a multiplier on 
G. We shall use the expression ‘a Weyl system on the group G with respect to the 
multiplier m’ to refer to a unitary projective representation W of G on a Hilbert 
space H. 
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Using the concise notation W ( X )  = Wx for the Weyl operators, we have 

WxWx,=  m ( X ,  X ’ )  W,,,, 

w, = n H  

w:, = w,’ = m(x, - X )  w-x 
and 

(here t denotes the adjoint). 
In what follows we shall always suppose that the multiplier m has the particular 

associated bicharacter which is equivalent to that used in continuous quantum 
mechanics 

b,(X,  X ’ )  = X X ( Y ’ ) X X , ( Y )  (2.3) 

We have to notice that if we define n ( X ,  X ’ )  = & ( y ) ,  then n is clearly a multiplier 
with X = (x, y )  and X ’  = (x’, y’) E G. 

and b, = b,. Then there exists a function 7 from G to T such that 

m ( x ,  X ’ )  = 1 7 ( X ) 7 ( X ’ ) i i ( X + X ’ ) ~ x , ( ~ ) .  (2.4) 

Theorem 2.3. For a Weyl system defined as above there exists a function 7 from G to 
T and two families of unitary operators on H, Vx,  x E 3 and U,, y E 3, representations 
of 4 and Ce respectively, with the commutation relations 

vx qv = x x  (Y 1 U,’VX 

wx, = 7(x, Y )  VXU, 

( 2 . 5 )  

such that 

(2.6) 

for all (x, y )  E G. The family { V,, U , }  is then what is known as a representation of the 
canonical commutation relations (CCR) in the Weyl form. 

ProoJ: The function 7 has been previously defined by (2.4), then if we set for (x, y )  E G 

vx = ii (x, 0) wx, 

vxv,,= Vx+,, (2.7) 

U,U,~ = U,,,’ (2.8) 

U, = i i ( 0 ,  Y )  WO, 

then the V and the U satisfy 

and (2.5) and (2.6) are valid. 0 

Conversely if the V and the U satisfy (2.5), (2.7) and (2.8) then to the W defined 
by (2.6) correspond a Weyl system, with multiplier m given by (2.4), for any 
function q. 

3. Quantum systems with a finite number of states 

3.1. Discrete Weyl operators 

Consider a quantum system with a finite number N of states. The Hilbert space 
associated with this system is C N  which is isomorphic to the space of periodic functions 
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of period N from Z to C. We shall denote this space by C(Z,) where ZN is the group 
of residues modulo N of Z, isomorphic to the cyclic group of order N. The state 
space C(Z,) is endowed with the usual scalar product 

for cp and $ belonging to C(E,). The dual group 4,v of Z, is isomorphic to ZN and 
we identify them. In order to build an explicit Weyl system we choose 

X X ( Y >  = 5,) 
for x, y in Z, and with 6 = exp(2ir/  N )  and we define the Fourier transform 9 on 

by 

( 9 $ ) ( x )  = N-”* c t-””+(y). 
.V€Z\ 

Now we introduce the unitary operators V and U from C(Z,) to C(Z,), tied to 
the phase multiplication and to the left translation 

( V 4 ) ( X )  = 5 W x )  ( U 4 ) ( X )  = 4 ( x  - 1). 

Taking V, = V”, x E ZN, the xth power of V, and U, = U”, y E E +,, the yth power of 
U, then { V,, U,} satisfies the properties (2.7), (2.8) and (2.5) 

vxuy = ~Xw,vx .  
So they give a representation of the CCR over ZN. Moreover, by the Stone-Von 
Neumann-Mackey theorem [lo] every irreducible representation of the CCR over ZN 
is isometrically equivalent to this one. 

Therefore the operators 

W”, = T ( X ,  Y )  V X U Y  (3 .1)  

are Weyl operators for any fixed function 77 : Z 
One can easily see from (2.2) and (2.3) that 

x Z , + T. 

Tr( W k  Wx, )  = NSx ( X ’ )  (3.2) 

for every X and X ’  of Z k .  S x ( X ’ )  = 1 if X = X ’  and S x ( X ’ )  = 0 otherwise. 
The family { W x ,  X E E L }  is thus a family of orthogonal operators with respect to 

the Hilbert-Schmidt scalar product. It gives a basis of the space 9 3 ( C ( Z N ) )  of the 
linear operators on C ( Z N ) .  Suppose A is a given operator of B(C(Z,)), then there 
exists a complex function A( , ) on Z’, such that 

(3.3) 

3.2. Discrete Wigner functions 

Following the ordinary Weyl quantisation procedure, we develop in the discrete case 
the method already used for the continuous case. 

Let us define the discrete Fano operators 

(3.4) 
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with ( p ,  q )  E Z’, . Then with any classical observable A( , ), a real function on Z’, , 
we associate the ‘quantum’ operator of a( C(Z,)) 

For any pure state + E C(Z,) of the system we can then write the mean value of A 
in the form 

(3 .6 )  

where &(p,  q )  = (1/ N ) ( + ,  Apq+) is the so-called discrete Wigner function. 

Fano operators are such that 
We have seen that the family {W,,, ( x ,  y ) € Z $ }  is a basis of B(C(Z,)). But the 

Aoo= c wx, Apq = wpq~oow;, Tr(A;qAprq,) = NG,(p’)S,(q’). (3 .7)  
(X,Y )e 23 

The family { A p q ,  ( p ,  q )  E E L }  is also a basis of a( C(Z,)) and any self-adjoint operator 
can be written in the form (3.3) or (3.5) with 

A and A being ‘symplectic’ Fourier transforms of one another. 

This condition will be fulfilled if and only if 
In order to have a real mean value of the operator A, f +  has to be real for any +. 

4 4  = A L  

r](x,  y ) r ] ( - x ,  -Y)5xY = 1 

for every ( p ,  q )  E ”, . This is possible if and only if the function r] given in (3.1) satisfies 

for each ( x ,  y )  E E’, . 

(for normalised +) 
Moreover, the ordinary probabilistic interpretation of quantum mechanics imposes 

So that f +  would satisfy 

c f J ( P 9  9 )  = 1. 
( P , q )  E Z N 

These conditions can be fulfilled for every + if and only if 

r ] ( &  0) = T ( 0 ,  X I  = 1 

Vx E E N .  This last condition also implies that 

Therefore we have the following result. 
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Proposition 3.1. Let W be the Weyl system on Z’, given by (3.1), then the unique 
mappingf:++f, from C ( Z , )  fo thespace offunctions on Z’, such that (3.6) is satisfied 
for every + of C ( Z N )  and every self-adjoint operator A, is given by 

1 
f,(P, 4 )  =z ( $ 9  

where the Fano operators A,, are defined by (3.4). Moreover, f$ will be real and will 
give the marginal distributions (3.8) and (3.9) for each + if and only if 

(3.10) 

(3.11) 

7(x, Y ) 7 ( - X ,  - Y ) P  = 1 

7(x, 0) = 7(0, x) = 1 

for every (x, y )  E z’, . 

Notes. The conditions (3.10) and (3.11) characterise the class of functions 7 which 
have to be used. For odd N we have already given an example of a convenient function 
7 [3]. For any choice of N one can choose, for example, 

- x y / Z + [ x , v /  N ] N / 2  
7(x, Y )  = 5 

where [ r ]  designates the integer part of the real number r. 

All the previous results can be extended without any difficulty to the case of mixed 
states. For that it is sufficient to define the Wigner function associated with a mixed 
state given by a density operator D (a positive operator of 9 ( C ( Z , ) )  with trace 1) 
in the following way: 

1 
f D ( P ,  4 )  =z Tr(ApqD). 

Note that f D  completely determines the state of the system because from the Wigner 
function f D  we can reconstruct the operator D 

In all cases from (3.7) we deduce a bound OffD which will be used in the following 

I f D ( p ,  q)l N-”2* (3.12) 

4. Markov process in the discrete phase space 

The construction of the Markov process associated with the Wigner function we 
introduce here is a generalisation of the one we gave in [3]. The number of possible 
states N of the system is odd or even and the function 77 appearing in (3.1) satisfies 
the conditions (3.10) and (3.11) (even if (3.11) is not really necessary for what follows). 

Let H be a self-adjoint operator from C ( B , )  to C ( Z N )  and D,, the density operator 
of the system at time t, be solution of 

d,D, = i[D,, HI 

with some initial condition D,=,  = Do.  

(4.1) 
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The Wigner function associated with D, being by definition 

X E , we deduce from (4.1) that fr satisfies the evolution equation 

ar.L(X) = c W X ,  X’l .L(X’) (4.2) 
X’EHh 

where 

1 
X(X, X’) =-Tr([Ax, Ax.]H). (4.3) N 

It is easy to see that X satisfies 

1 X ( X ,  X ’ )  = X ( X ,  X ’ )  = X ( X ,  X )  = 0. 
X E Z h  X’€& 

(4.4) 

Starting from the Wigner function f i ( X ) ,  we construct a strictly positive function 
g,(X, a )  defined on Z’, x { - 1 , 1 }  if we set 

1 1 
2 N 2  4N3/’ g,(X,  a)=-+- a J ( X ) .  (4.5) 

This function g,  has the following properties: 

2 ~ ~ / ~  ag,(x,a) =fi(x). (4.6) 
u€{- l , l }  

c gr (X ,a )=1  
( x,u ) E  z $ x { -  1 , I  I 

Using the bound we gave in (3.12), we see that g,  is indeed strictly positive. Moreover, 
using (4.4) and (4.2), we have 

a,g,(X, a )  = c wx, X’)&+(a)g,(X’,  0’). (4.7) 
( X ’ , U ’ I € Z i  x {  - 1,1}  

This equation can in fact be put in the form of a forward Kolmogorov equation 
(Fokker-Planck equation). Thus g, can be interpreted as the probability distribution 
of a Markov process in Z’, x { - 1 ,  l } .  Indeed if we introduce 

A , ( X ,  a;  X ’ ,  a’) = Xm + X ( X ,  X ’ )au , (a )  if ( X ,  a )  # ( X ’ ,  a’) 
g , (X’ ,  a‘) 

(4.8) 

(4.9) 

where X,,, = max(x,X8,,,;tilX(X, X‘) l ,  we have from (4.7) that 

&g,(X, a )  = & A,(X a;  X ’ ,  a’)g,(X‘,  a’). (4.10) 
(x’,u’)€zNx{-l,l) 

A,  is a Markov generator because if ( X ,  a )  # ( X ‘ ,  a’) then 

A , ( X ,  a;  X ’ ,  a’) 3 0 A, (X ,  U ;  X ’ ,  a’) = 0. 
( X * = I E  z Y x { -  1 . I  I 

Therefore the general theory of stochastic processes [ 111 gives the following 
theorem. 

Theorem 4.1. One can find a probability space (CL, 9, p )  such that the function A, 
defined on ( E L  x {-1, 1})2, t E [0, TI an interval of W, and given by (4.8) and (4.9) 
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generates a Markov process Z ( t )  = ( X ( t ) ,  U( t ) )  on (R, 9, p ) ,  having values in Z’, X 

{-1, 1) and with transition probability 

P ( X ,  (T, t ;  X ’ ,  ( T I ,  t ’ )  = p ( Z ( t )  = ( X ,  a) /Z( t ‘ )  = ( X ’ ,  a’)) t >  t’ 

solution of the forward Kolmogorov equation 

a,P(X,  U, r ;  X’, U’, t ‘ )  = 

with the initial condition 

7 
( Y,r  1 € z ,v x { - 1,1} 

A , ( X ,  a ;  Y, T ) P (  Y, T, t ;  X’, a’, t ’ )  (4.1 1) 

lim P ( X ,  a ,  t ;  X ’ ,  d, t ‘ )  = & ( X ) 8 , . ( a ) .  
flf’  

(4.12) 

In particular, if the initial distribution of Z ( t )  is the function g o ,  given by (4.5) with 
t =0, the distribution at time t of Z ( t )  is the solution of (4.10), namely 

S f ( X ,  a) = c P ( X ,  (T, t ;  X ’ ,  U ’ ,  O)g,(X‘,  a’). 
( x ~ , u 7 € z ~ x { - l , l ~  

The stochastic process Z( t )  can be used to write the quantum mean value of any 
operator as a probabilistic mean value. Let K be any self-adjoint operator on C ( Z , ) ,  
by definition the quantum mean value of K is 

( K )  = Tr(KDf) = c Tr(AxK)f,(X). 
X € h i ,  

Set 

K ( X ,  U )  =2N3’*aTr(AXK) 

using (4.6) we deduce that the mean value of K is 

(K) = EK(Z( t ) )  (4.13) 
where Z ( t )  is the Markov process defined by (4.11) and (4.12) and with initial 
distribution g o .  

Now one could ask how to recover a Wigner function from a Markov process 
having values in Z’, x {-1,l). We give here a natural answer. 

Let A ,  be the Markov generator of some Markov process Z (  t )  defined on Z’, x 
{-1, 1) and g ,  the probability distribution corresponding to some initial distribution 
go. Define 

f , ( X )  = c 2N3’*ag,(X, a ) .  (4.14) 

Suppose that at time t = O x  is a Wigner function (namely there exists a density operator 
D such that & ( X )  = 1/ N Tr(A,D)); then f, is a Wigner function at all times if we can 
find an operator H such that 

u€{- l , l }  

a A f ( X ,  U; X ’ ,  U’)g , (X’ ,  U’) = 2 X ( X ,  X ‘ ) a ’ g , ( X ‘ ,  a’) 
X ’ , u ’ p  X’ ,U’  

where 

1 
%(X, X ‘ )  =-Tr([Ax, A x , ] H )  

N 

does not depend on t and a’. 
This is obviously a consequence of the fact that the function f , ( X )  in (4.14) is 

solution of an equation of type (4.2) and that one can prove, using Dyson’s series, 
that f, is indeed a Wigner function. 
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5. Another phase space formulation 

We want to stress here some points of comparison between the phase space formulation 
we just gave and the one introduced by Varilly and Gracia-Bondia [12]. If the system 
has spin j then Varilly and Gracia-Bondia take the phase space equal to S2 and show 
that it is possible to construct on S2 a family {A’(n), n E S 2 }  of self-adjoint operators 
from C2jt1 to C2J+’  such that 

5 5,; A’(n) dn = I 

Tr(A’(m)A’(n))A’(n) dn = AJ(m) V m  E S 2  (5.1) 

A’( g.  n) = IIj( g)AJ ( n)II j (  g)-‘ v g  E SU(2) 

where dn = d q  d cos 8 if (8, cp) are the spherical coordinates of n E Sz, g. n denotes 
the natural action of g on n and I l j  is an irreducible representation of SU(2) on @’’+I. 

The Stratonovich-Weyl symbol of an operator A from C2J+’ to C2’+’ is defined by 

WA(n) =Tr(AJ(n)A) 

and one has 

So if the system is in state D, a density operator on @’’+I, the Wigner function on the 
sphere S 2  is by definition 

2 j i  1 
4 l l  

fD(n) =-Tr(AJ(n)D). 

In fact one can go from this formulation to the one we have proposed or vice versa 
in a very simple way. For a spin j = t ( N  - l ) ,  N E N\{O}, the Fano operators 
defined from CN = C(Z,) to CN. Thus for the operator A we will have 

with 

and where 

Q X y (  n) = Tr(AJ( n)A,.). 

Of course for any A given by (5.2) one has the converse formula 

will be 

(5.2) 

On the other hand one can also build on S2  x {-1,l)  a Markov process associated 
with the Wigner function on the sphere by using the same kind of technique we have 
used in section 4. As previously, this process allows one to compute quantum mean 
values in a probabilistic way. 
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But the major difference between these two schemes is, as noticed by Varilly [ 131, 
the invariance property. The Fano operators do not have the SU(2) invariance property 
(5.1) but instead are invariant relative to the discrete Heisenberg group and therefore 
they give a discrete version of the usual phase space formulation of quantum mechanics. 

6. General remarks 

The first remark to make is that the transition probabilities of the process we have 
introduced are state dependent. This comes from the fact that the Markov generator 
A, defined by (4.8) and (4.9) depends on the density g,. This seems to be a general 
feature of all Markov processes associated with a quantum dynamics via a forward 
Kolmogorov equation [5-71, and then is an apparent feature of stochastic mechanics. 

On the other hand, from the Wigner function we could define some other probability 
distribution g,. For example 

where r is any real number strictly less than ( 1/2N2). We can even enlarge the phase 
space by allowing a variable U to take more than two values. Moreover, for a particular 
choice of the function 7 one can imagine different generators A, .  Indeed when 
N = 2a - 1, a E N\{O}, we have used in [3] the function 

(ax mod N is the division by 2 of x in ZN), and shown that in that case one can build 
a Markov generator A,  which has a different form from the one we give in (4.8) and 
(4.9). These remarks prove that the process associated with a Wigner function is 
definitely not unique. The same remark has been made by Jaekel and Pignon about 
the Nelson construction [ 141. 

In a completely independent way Galetti and De Toledo Piza [15] study the limit 
of N going to infinity for the discrete Wigner function with the following special choice 
of the function 7: 

~ ( x ,  Y )  = exp[-(i.rr/N)xyl 

if x, y E {-;( N - 11, - f ( N  - 1) + 1, - f ( N  - 1) +2,  . . . , t (  N - l )}  and N is odd. Formally 
the discrete Wigner function goes to the one given by Wigner in [ 161 for the case where 
the Hilbert space is L2(R) .  The limit is achieved by the use of Riemann sums on a 
finite lattice with mesh length (2.rr/N)”*. Therefore the discrete Wigner function can 
be seen as a discretisation on a finite lattice of the usual Wigner function defined on 88’. 

Acknowledgments 

Part of this work was accomplished during different stays at BiBoS. Two of us (PhC 
and MSC) benefited from an exchange programme between the Centre for Theoretical 
Physics in Marseille and the BiBoS centre in Bielefeld within the framework of an 
international cooperation between CNRS (France) and DFG (FRG), and would like 
to thank these organisations. 



Wigner function of a quantum system with a jn i t e  number of states 201 1 

One of us (OC) is grateful to the BiBoS, to the Sonderforschungsbereich 237 
(Bochum/Essen/ Dusseldorf) and to the PROCOPE programme for financial support 
during his stay in Bielefeld. 

It was a great pleasure for all of us to have fruitful discussions with Ph Blanchard, 
J C Varilly and J Gracia-Bondia during these visits. 

References 

[ 13 Combe Ph, Guerra F, Rodriguez R, Sirugue M and Sirugue-Collin M 1984 Quantum dynamical time 
evolutions as stochastic flows on phase-space Physica 124A 561-74 

[2] Maslov V P 1983 The Kolmogorov-Feller equation and the probabilistic model of quantum mechanics 
J. Sou. Math. 23 2534-53 

[ 3 ]  Cohendet 0, Combe Ph, Sirugue M and Sirugue-Collin M 1988 A stochastic treatment of the dynamics 
of an integer spin J. Phys. A:  Math. Gen. 21 2875-83 

[4] Cohendet 0, Combe Ph and Sirugue-Collin M 1989 Weyl quantization for Z N  X Z , ~  phase space: 
Stochastic aspect Proc. 24th Winter School of Theoretical Physics in Karpacz ed R Gielerak and W 
Karwowski (Singapore: World Scientific) 

[5]  De Angelis G F 1988 A route to stochastic mechanics Stochastic Processes in Classical and Quantum 
Systems (Lecture Notes in Physics 262) ed S Albeverio, G Casati and D Merlini (Berlin: Springer) 

[6] Nelson E 1966 Derivation of the Schrodinger equation from Newtonian mechanics Phys. Rev. 150 

[7] Guerra F and Marra R 1984 Discrete stochastic variational principles and quantum mechanics Phys. 

[8] Cohendet 0 1987 Etude d’une mtcanique stochastique dans I’espace des phases Thesis Universitt de  

[9] Kleppner A 1965 Multipliers on abelian groups Math. Ann. 158 11-34 

1079-85 

Rev. D 29 1647-55 

Provence 

[ lo]  Mackey G W 1949 On a theorem of Stone and Von Neumann Duke Math. J. 16 313-26 
[ l l ]  Gihman I and Skorohod A 1974 The Theory of Stochastic Processes vol I ,  I1 and 111 (Berlin: Springer) 
[12] Varilly J C and Gracia-Bondia J M 1989 The Moyal representation for spin Ann. Phys., NY 190 107-48 
[ 131 Varilly J C Private communication 
[ 141 Jaekel M T and Pignon D 1985 Stochastic processes of a quantum state Inr. J. Theor. Phys. 24 557-69 
[15]  Galetti D and De Toledo Piza A F R 1988 An extended Weyl-Wigner transformation for special finite 

[161 Wigner E P 1932 On the quantum correction for thermodynamic equilibrium Phys. Rev. 40 749-59 
spaces Physica 149A 267-82 


